FANDOM


Повернутися до розділу "Група Пуанкаре".

Пуанкаре-перетворення для спінових хвиль поля довільного спінуEdit

Нехай поставлене питання того, щоб утворити скалярний об'єкт (відносно перетворень групи Пуанкаре у імпульсному просторі) \ \hat {\Psi}_{A}(x). Іншими словами, треба зкомбінувати оператори народження та знищення з об'єктами із спінорними індексами, підбираючи, при цьому, ці об'єкти так, щоб згортка була Пуанкаре-скаляром. Це потрібно тому, що оператори фізичних величин (зокрема - гамільтоніан у теорії збурень) повинні бути пуанкаре-скалярами в імпульсному просторі, а у фоківському просторі оператори будуються через комбінації операторів народження і знищення. Окрім того, повинно бути справедливим перетворення групи Пуанкаре для полів:

\ U (\Lambda , a)\hat {\Psi}^{\pm}_{A}U^{-1}(\Lambda , a) = T(N)_{A}^{\ B}\Psi_{B}(\Lambda x + a) \qquad (1)

(зміст знаків \ \pm буде пояснено нижче). У результаті оператор довільної фізичної величини, що має фіксований закон перетворення по групі Пуанкаре, можна побудувати як поліном по цих полях (наприклад, гамільтоніан взаємодії у теорії збурень будується як пуанкаре-скаляр).

Вирази \ (1), а також - закони \ (10), (11) перетворення операторів народження та знищення у значній мірі фіксують вирази для полів, оскільки, як буде видно нижче, визначають \ u^{\sigma}_{A}, v^{\sigma}_{A} через закони їх перетворення по групі Пуанкаре.

Отже, вирази для операторів поля, відповідно до вищенаведених міркувань, можна записати як

 \hat {\Psi}^{+}(x) = \sum_{\sigma}\int d^{3}\mathbf p \hat {a}_{\sigma}(\mathbf p)u^{\sigma}_{A}(x, \mathbf p), \quad \hat {\Psi}^{-}(x) = \sum_{\sigma}\int d^{3}\mathbf p \hat {b}^{\dagger}_{\sigma}(\mathbf p)v^{\sigma}_{A}(x, \mathbf p),

Треба узгодити закон перетворення таких полів та вираз \ (1):

\ U(\Lambda , a) \hat {\Psi}^{+}_{A}U^{-1}(\Lambda , a) = \sum_{\sigma}\int d^{3}\mathbf p u^{\sigma}_{A}(x, \mathbf p)U(\Lambda , a) \hat {a}_{\sigma}(\mathbf p)U^{-1}(\Lambda , a) = \sum_{\sigma , \sigma {'}} \int d^{3}\mathbf{(\Lambda  p)}\frac{p_{0}}{(\Lambda p)^{0}}e^{-ia_{\mu}(\Lambda p)^{\mu}}u^{\sigma}_{A}(x, \mathbf p)\sqrt{\frac{(\Lambda p)^{0}}{p^{0}}}D^{*}_{\sigma ' \sigma}(R(\Lambda , p)) \hat {a}_{\sigma '}(\mathbf {(\Lambda p)}) =

\ = T(N)_{A}^{\ B}\sum_{\sigma {'}}\int d^{3}\mathbf {\Lambda p}u^{\sigma {'}}_{B}(\Lambda x + a, \mathbf {\Lambda p})\hat {a}_{\sigma '}(\mathbf {\Lambda p}).

Звідси слідує, що

\ T(N^{-1})_{A}^{\ B}u^{\sigma {'}}_{B}(\Lambda x + a, \mathbf {\Lambda p}) = e^{-ia^{\mu}(\Lambda p)_{\mu}}\sqrt{\frac{p^{0}}{(\Lambda p)^{0}}}\sum_{\sigma }D^{*}_{\sigma ' \sigma}(R(\Lambda, p))u^{\sigma }_{A}(x, \mathbf p).

Вираз можна переписати, враховуючи унітарність представлення малої групи \ D^{*}_{\sigma ' \sigma}(R(\Lambda, p)): домноживши його на \ D_{\sigma {'} \sigma_{1}} та беручи суму по \ \sigma {'}, а також домноживши на матрицю \ T(N)^{\ A}_{C}, отримуємо

\ \sum_{\sigma {'}}u^{\sigma {'}}_{C}(\Lambda x + a, \mathbf {\Lambda p})D_{\sigma {'}\sigma_{1}}(R(\Lambda , p)) = e^{-ia^{\mu}(\Lambda p)_{\mu}}\sqrt{\frac{p^{0}}{(\Lambda p)^{0}}}T(N)^{\ A}_{C}u^{\sigma_{1}}_{A}(x, \mathbf p) \qquad (2).

Аналогічним чином для \ v^{\sigma}_{A}(x, \mathbf p) отримується співвідношення

\ \sum_{\sigma {'}}v^{\sigma {'}}_{C}(\Lambda x + a, \mathbf {\Lambda p})D^{*}_{\sigma {'}\sigma_{1}}(R(\Lambda , p)) = e^{ia^{\mu}(\Lambda p)_{\mu}}\sqrt{\frac{p^{0}}{(\Lambda p)^{0}}}T(N)^{\ A}_{C}v^{\sigma_{1}}_{A}(x, \mathbf p) \qquad (3).

Нехай у цих виразах \ \Lambda = 1. Тоді

\ u^{\sigma }_{C}(x + a, \mathbf {p}) = e^{-ia^{\mu}p_{\mu}}u^{\sigma}_{C}(x, \mathbf p), \quad v^{\sigma }_{C}( x + a, \mathbf {p}) = e^{ia^{\mu}p_{\mu}}v^{\sigma}_{C}(x, \mathbf p).

Це означає, що координатна залежність цих функцій - виду \ e^{\mp px} відповідно, тобто,

\ u^{\sigma}_{C}(x, \mathbf p) = \frac{1}{\sqrt{(2 \pi)^{3}2 p^{0}}}e^{-ipx}u^{\sigma}_{C}(\mathbf p), \quad v^{\sigma}_{C}(x, \mathbf p) = \frac{1}{\sqrt{(2 \pi)^{3}2 p^{0}}}e^{ipx}v^{\sigma}_{C}(\mathbf p).

Тут множник \ \frac{1}{\sqrt{(2 \pi)^{3}2 p^{0}}} введений для спрощення виразів перетворення \ (2), (3):

\ \sum_{\sigma '}u^{\sigma '}_{A}(\mathbf {\Lambda p} )D_{\sigma ' \sigma }(R(\Lambda , p)) = T(N)_{A}^{\ B}u^{\sigma}_{B}(\mathbf p), \quad \sum_{\sigma '}v^{\sigma '}_{A}(\mathbf {\Lambda p} )D^{*}_{\sigma ' \sigma }(R(\Lambda , p)) = T(N)_{A}^{\ B}v^{\sigma}_{B}(\mathbf p).

Отже, знак "плюс" у полі \ \hat {\Psi}^{+}_{A}(x) означає, що при дії оператору енергії отримується додатна енергія (тобто, формально поле - додатньочастотне), а "мінус", відповідно, означає від'ємну енергію (формально поле - від'ємночастотне).

Зв'язок коефіцієнтних функцій полів народження та знищенняEdit

Із полів народження та знищення попереднього підрозділу можна сконструювати об'єкт (про необхідність введення такого об'єкту можна прочитати у розділі про античастинки)

\ \hat {\Psi}_{A}(x) = \sum_{\sigma}\int \frac{d^{3}\mathbf p}{\sqrt{(2 \pi)^{3}2p_{0}}}\left( k_{1}u^{\sigma}_{A}(\mathbf p ) \hat {a}_{\sigma}(\mathbf p )e^{-ipx} + k_{2}v^{\sigma}_{A}(\mathbf p ) \hat {b}^{\dagger}_{\sigma}(\mathbf p )e^{ipx} \right).

Тут \ k_{1, 2} - деякі числові фактори, \ p_{0} = \sqrt{\mathbf {p}^{2} + m^{2}}, \ \sigma = -s, ..., s для масивних частинок та \ \sigma = \pm s для безмасових, \ A - набір спін-тензорних індексів.

Задачею цього розділу буде визначити зв'язок між функціями \ u^{\sigma}_{A}(\mathbf p ), v^{\sigma '}_{A}(\mathbf p ).

Як відомо із попереднього підрозділу,

\ \sum_{\sigma '}u^{\sigma '}_{A}(\mathbf {\Lambda p} )D_{\sigma ' \sigma }(R(\Lambda , p)) = T(N)_{A}^{\ B}u^{\sigma}_{B}(\mathbf p), \quad \sum_{\sigma '}v^{\sigma '}_{A}(\mathbf {\Lambda p} )D^{*}_{\sigma ' \sigma }(R(\Lambda , p)) = T(N)_{A}^{\ B}v^{\sigma}_{B}(\mathbf p) \qquad (4),

де \ D_{\sigma ' \sigma }(R(\Lambda , p)) - матричні коефіцієнти оператора малої групи даної "оболонки". Розглянемо цей формалізм детальніше.

Масивний випадокEdit

Нагадаю, що малою групою для масивних представлень групи Пуанкаре є групи SO(3); співвідношення, що визначають цю групу та дію відповідного перетворення на одночастинкові стани, є

\ D_{\sigma ' \sigma }(T(\hat {J})) = \delta_{\sigma \sigma {'}} + i\omega^{i}\hat {J}^{i}_{\sigma \sigma {'}} + o(\omega^{2}) \qquad (5),

де \ \hat {J}^{i} є матрицями незвідного представлення групи поворотів для спіну \ s:

\ \hat {J}_{1 (\sigma \sigma')} = \frac{1}{2}\left( \delta_{\sigma' (\sigma + 1)}\sqrt{(s + \sigma + 1)(s  - \sigma)} + \delta_{\sigma' (\sigma - 1)}\sqrt{(s + \sigma)(s - \sigma + 1)} \right) \qquad (6),

\ \hat {J}_{2 (\sigma  \sigma ')} = \frac{i}{2}\left( \delta_{\sigma' (\sigma - 1)}\sqrt{(s + \sigma)(s  - \sigma + 1)} - \delta_{\sigma' (\sigma + 1)}\sqrt{(s - \sigma)(s + \sigma + 1)} \right) \qquad (7),

\ \hat {J}_{3 (\sigma \sigma')} = \sigma\delta_{\sigma \sigma'} \qquad (8).

Це означає, що \ (4) можна переписати, підставивши у нього \ (5) та прирівнявши лінійні по координатам \ \omega_{i} доданки:

\ \sum_{\sigma '}u^{\sigma '}_{A}(\mathbf 0 )\hat {J}^{i}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}u^{\sigma}_{B}(\mathbf 0), \quad -\sum_{\sigma '}v^{\sigma '}_{A}(\mathbf 0 )(\hat {J}^{i})^{*}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}v^{\sigma}_{B}(\mathbf 0) \qquad (9).

Залишається лише врахувати \ (6)-(8) і той факт, що

\ (\hat {J}^{i})^{*}_{\sigma ' \sigma } = -(-1)^{\sigma - \sigma '}\hat {J}^{i}_{-\sigma ', -\sigma }.

Дійсно, вирази для матричних елементів \ \hat {J}_{1}, \hat {J}_{3} це перетворення залишає інваріантним, а у виразі для \ \hat {J}_{2} змінює знак, як це і повинно бути після комплексного спряження.

Після підстановки цього виразу до \ (9) та заміни для другого виразу \ \sigma \to -\sigma , \sigma ' \to -\sigma ' можна отримати

\ \sum_{\sigma '}u^{\sigma '}_{A}(\mathbf 0 )\hat {J}^{i}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}u^{\sigma}_{B}(\mathbf 0), \quad \sum_{\sigma '}(-1)^{\sigma + \sigma '}v^{-\sigma '}_{A}(\mathbf 0 )\hat {J}^{i}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}v^{-\sigma}_{B}(\mathbf 0),

або ж

\ \sum_{\sigma '}u^{\sigma '}_{A}(\mathbf 0 )\hat {J}^{i}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}u^{\sigma}_{B}(\mathbf 0), \quad \sum_{\sigma '}(-1)^{\sigma '}v^{-\sigma '}_{A}(\mathbf 0 )\hat {J}^{i}_{\sigma ' \sigma } = (\hat {\mathbf J}^{i})_{A}^{\ B}(-1)^{\sigma} v^{-\sigma}_{B}(\mathbf 0).

Звідси очевидно, що \ u^{\sigma }_{A}(\mathbf 0 ) і \ (-1)^{\sigma}v^{-\sigma }_{A}(\mathbf 0 ) перетворюються однаково, а отже, рівні з точністю до постійного множника. Тому

\ u^{\sigma }_{A}(\mathbf 0 ) = (-1)^{\sigma + s}v^{-\sigma }_{A}(\mathbf 0 ) \qquad (10),

де множник \ (-1)^{s} зафіксував довільність. Із цього слідує, що якщо у представленні групи тривимірних поворотів спіну \ s міститься у представленні \ T(\Lambda ) лише один раз, то \ u^{\sigma }_{A}(\mathbf 0 ) і \ (-1)^{\sigma }v^{-\sigma }_{A}(\mathbf 0 ) співпадають з точністю до нормуючого множника.

Нехай тепер у \ (4) \ \Lambda = L(p) (тобто, \  L(p)k = p). Тоді \ R(\Lambda , k)  = L^{-1}(\Lambda k) \Lambda L(k) = L^{-1}(\Lambda k) L(p) L(k) = L^{-1}(\Lambda k) L(\Lambda k) L(k) = 1, і \ (4) набуде вигляду

\ u^{\sigma }_{A}(\mathbf {\Lambda k} ) = T_{A}^{\ B}(L(\Lambda k))u^{\sigma}_{B}(\mathbf k), \quad v^{\sigma}_{A}(\mathbf {\Lambda k} ) = T_{A}^{\ B}(L(\Lambda k))v^{\sigma}_{B}(\mathbf k).

Це означає, що функції \ u^{\sigma}_{A} (\mathbf p), v^{\sigma}_{A}(\mathbf p) повністю визначаються своїми значеннями при стандартному імпульсі \ k. Отже, з урахуванням \ (10),

\ u^{\sigma}_{A}(\mathbf p) = (-1)^{\sigma + s}v^{-\sigma}_{A}(\mathbf p) \qquad (11).

Це еквівалентно твердженню про те, що якщо представлення группи поворотів спіну \ s міститься у представленні \ T(N)_{A}^{\ B} лише один раз, то функції \ u^{\sigma}_{A}(\mathbf p), v^{\sigma}_{A}(\mathbf p) відповідного поля \ (0) зв'язані через \ (11).

У наступному розділі застосовність цього результату буде проаналізована для незвідних представлень групи Пуанкаре цілого та напівцілого спінів, що задані релятивістськими рівняннями.

Безмасовий випадокEdit

Вирази \ (4) є справедливими також для безмасового випадку із тією різницею, що в них не буде суми по \ \sigma, а в якості малої групи виступатиме група Евкліда \ SO_{+}(2, 1) . Для неї перетворення малої групи має вигляд \ D_{\sigma \sigma '}^{(\lambda )}(R(\Lambda , p)) = \delta_{\sigma \sigma '}e^{i \lambda \theta (\Lambda , p)}, тому \ (4) коефіцієнтної функції для поля народження спіральності \ \lambda набуде вигляду

\ v^{\lambda}_{a_{1}...a_{2\lambda}}(\mathbf p )e^{-i\lambda \theta (\Lambda , p)} = T_{a_{1}...a_{2\lambda }}^{\ b_{1}...b_{2\lambda}}(\Lambda )u^{\lambda}_{b_{1}...b_{2\lambda}}(\mathbf p) \qquad (12).

Нагадаю, що тут

\ \Lambda = \begin{pmatrix} 1 + \varepsilon & \alpha & \beta & -\varepsilon \\ \alpha & 1 & 0 & -\alpha \\ \beta & 0 & 1 & -\beta  \\ \varepsilon & \alpha & \beta & 1 - \varepsilon \end{pmatrix}\tilde {R}(\theta), \quad \tilde {R}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & cos(\theta ) & sin(\theta ) & 0 \\ 0 & -sin(\theta ) & cos(\theta ) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}

- перетворення малої групи безмасових станів.


На цьому побудова пуанкаре-коваріантних операторів полів поки що завершена. Аналіз буде продовжений після дослідження ще одного потужного способу побудови пуанкаре-коваріантних операторів - релятивістських хвильових рівнянь.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.